Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Mol Diagn ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38378079

ABSTRACT

Microarray-based methylation profiling has emerged as a valuable tool for refining diagnoses and revealing novel tumor subtypes, particularly in central nervous system tumors. Despite the increasing adoption of this technique in clinical genomic laboratories, no technical standards have been published in establishing minimum criteria for test validation. A working group with experience and expertise in DNA-based methylation profiling tests on central nervous system tumors collaborated to develop practical discussion points and focus on important considerations for validating this test in clinical laboratory settings. The experience in validating this methodology in a clinical setting is summarized. Specifically, the advantages and challenges associated with utilizing an in-house classifier compared with a third-party classifier are highlighted. Additionally, experiences in demonstrating the assay's sensitivity and specificity, establishing minimum sample criteria, and implementing quality control metrics are described. As methylation profiling for tumor classification expands to other tumor types and continues to evolve for various other applications, the critical considerations described here are expected to serve as a guidance for future efforts in establishing professional guidelines for this assay.

2.
Mol Genet Genomic Med ; 12(3): e2349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263869

ABSTRACT

BACKGROUND: Chromosomal microarray (CMA) is commonly utilized in the obstetrics setting. CMA is recommended when one or more fetal structural abnormalities is identified. CMA is also commonly used to determine genetic etiologies for miscarriages, fetal demise, and confirming positive prenatal cell-free DNA screening results. METHODS: In this study, we retrospectively examined 523 prenatal and 319 products-of-conception (POC) CMA cases tested at Nationwide Children's Hospital from 2011 to 2020. We reviewed the referral indications, the diagnostic yield, and the reported copy number variants (CNV) findings. RESULTS: In our cohort, the diagnostic yield of clinically significant CNV findings for prenatal testing was 7.8% (n = 41/523) compared to POC testing (16.3%, n = 52/319). Abnormal ultrasound findings were the most common indication present in 81% of prenatal samples. Intrauterine fetal demise was the common indication identified in POC samples. The most common pathogenic finding observed in all samples was isolated trisomy 21, detected in seven samples. CONCLUSION: Our CMA study supports the clinical utility of prenatal CMA for clinical management and identifying genetic etiology in POC arrays. In addition, it provides insight to the spectrum of prenatal and POC CMA results as detected in an academic hospital clinical laboratory setting that serves as a reference laboratory.


Subject(s)
Chromosome Disorders , Down Syndrome , Female , Humans , Pregnancy , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Fetal Death , Prenatal Diagnosis/methods , Retrospective Studies
5.
J Appl Lab Med ; 9(1): 61-75, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38167757

ABSTRACT

BACKGROUND: Throughout history, the field of cytogenetics has witnessed significant changes due to the constant evolution of technologies used to assess chromosome number and structure. Similar to the evolution of single nucleotide variant detection from Sanger sequencing to next-generation sequencing, the identification of chromosome alterations has progressed from banding to fluorescence in situ hybridization (FISH) to chromosomal microarrays. More recently, emerging technologies such as optical genome mapping and genome sequencing have made noteworthy contributions to clinical laboratory testing in the field of cytogenetics. CONTENT: In this review, we journey through some of the most pivotal discoveries that have shaped the development of clinical cytogenetics testing. We also explore the current test offerings, their uses and limitations, and future directions in technology advancements. SUMMARY: Cytogenetics methods, including banding and targeted assessments like FISH, continue to hold crucial roles in cytogenetic testing. These methods offer a rapid turnaround time, especially for conditions with a known etiology involving recognized cytogenetic aberrations. Additionally, laboratories have the flexibility to now employ higher-throughput methodologies to enhance resolution for cases with greater complexity.


Subject(s)
Chromosome Aberrations , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence/methods , Cytogenetics/methods , Chromosome Mapping , High-Throughput Nucleotide Sequencing/methods
6.
Muscle Nerve ; 68(6): 833-840, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37789688

ABSTRACT

INTRODUCTION/AIMS: Exome sequencing (ES) has proven to be a valuable diagnostic tool for neuromuscular disorders, which often pose a diagnostic challenge. The aims of this study were to investigate the clinical outcomes associated with utilization of ES in the pediatric neuromuscular clinic and to determine if specific phenotypic features or abnormal neurodiagnostic tests were predictive of a diagnostic result. METHODS: This was a retrospective medical record review of 76 pediatric neuromuscular clinic patients who underwent ES. Based upon clinical assessment prior to ES, patients were divided into two groups: affected by neuromuscular (n = 53) or non-neuromuscular (n = 23) syndromes. RESULTS: A diagnosis was made in 28/76 (36.8%), with 29 unique disorders identified. In the neuromuscular group, a neuromuscular condition was confirmed in 78% of those receiving a genetic diagnosis. Early age of symptom onset was associated with a significantly higher diagnostic yield. The most common reason neuromuscular diagnoses were not detected on prior testing was due to causative genes not being present on disease-specific panels. Changes to medical care were made in 57% of individuals receiving a diagnosis on ES. DISCUSSION: These data further support ES as a powerful diagnostic tool in the pediatric neuromuscular clinic and highlight the advantages of ES over gene panels, including the ability to identify diagnoses regardless of etiology, identify genes newly associated with disease, and identify multiple confounding diagnoses. Rapid and accurate diagnosis by ES can not only end the patient's diagnostic odyssey, but often impacts patients' medical management and genetic counseling of families.


Subject(s)
Genetic Counseling , Neuromuscular Diseases , Humans , Child , Exome Sequencing , Retrospective Studies , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Genetic Testing
7.
J Genet Couns ; 32(6): 1213-1216, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37571913

ABSTRACT

As a result of the pandemic, the traditional in-person didactic lecture model was adapted to a virtual learning approach. Our Laboratory Genetics and Genomics fellowship program at Nationwide Children's hospital took advantage of this opportunity to organize a multi-institutional Fellow's Conference to educate fellows from different programs on a wide range of medical genetics topics. We describe our approach of developing this lecture series utilizing subject-matter experts across institutions. In addition, we discuss the value of such an approach in reducing the amount of time individual institutions spend creating and providing didactic content for their small number of learners. Our experience could serve as a model for other educators and program directors, including genetic counseling program directors, to develop multi-institutional collaborations for didactic learning.


Subject(s)
Fellowships and Scholarships , Learning , Child , Humans , Education, Medical, Graduate , Curriculum , Laboratories , Surveys and Questionnaires
8.
Genet Med ; 25(7): 100861, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087635

ABSTRACT

PURPOSE: This study aimed to establish variants in CBX1, encoding heterochromatin protein 1ß (HP1ß), as a cause of a novel syndromic neurodevelopmental disorder. METHODS: Patients with CBX1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. To investigate the pathogenicity of identified variants, we performed in vitro cellular assays and neurobehavioral and cytological analyses of neuronal cells obtained from newly generated Cbx1 mutant mouse lines. RESULTS: In 3 unrelated individuals with developmental delay, hypotonia, and autistic features, we identified heterozygous de novo variants in CBX1. The identified variants were in the chromodomain, the functional domain of HP1ß, which mediates interactions with chromatin. Cbx1 chromodomain mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Cytological and chromatin immunoprecipitation experiments confirmed the reduction of mutant HP1ß binding to heterochromatin, whereas HP1ß interactome analysis demonstrated that the majority of HP1ß-interacting proteins remained unchanged between the wild-type and mutant HP1ß. CONCLUSION: These collective findings confirm the role of CBX1 in developmental disabilities through the disruption of HP1ß chromatin binding during neurocognitive development. Because HP1ß forms homodimers and heterodimers, mutant HP1ß likely sequesters wild-type HP1ß and other HP1 proteins, exerting dominant-negative effects.


Subject(s)
Chromobox Protein Homolog 5 , Heterochromatin , Animals , Mice , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Histones/genetics , Histones/metabolism
9.
Eur J Med Genet ; 66(4): 104731, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36775013

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a progressive multisystem disorder including encephalopathy with significant impacts on intellectual and physical abilities. An early diagnosis is becoming ever more crucial, as targeted therapies are emerging. A deep understanding of the molecular heterogeneity of AGS can help guide the early diagnosis and clinical management of patients, and inform recurrence risks. Here, we detail the diagnostic odyssey of a patient with an early presentation of AGS. Exome and genome sequencing detected an intronic RNASEH2B variant missed in a conventional leukodystrophy NGS gene panel. RNA studies demonstrated that a c.322-17 A > G variant affected splicing and caused 16-nucleotide intronic retention in the RNASEH2B transcript, introducing an out-of-frame early termination codon. RNASEH2B expression in the patient's blood was reduced when compared to controls. Our study highlights the pathogenicity of this intronic variant and the importance of its inclusion in variant assessment.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Humans , Mutation , Autoimmune Diseases of the Nervous System/genetics , Nervous System Malformations/genetics , Exome
10.
Front Genet ; 14: 1298574, 2023.
Article in English | MEDLINE | ID: mdl-38304066

ABSTRACT

Background: Leigh syndrome is a rare, genetic, and severe mitochondrial disorder characterized by neuromuscular issues (ataxia, seizure, hypotonia, developmental delay, dystonia) and ocular abnormalities (nystagmus, atrophy, strabismus, ptosis). It is caused by pathogenic variants in either mitochondrial or nuclear DNA genes, with an estimated incidence rate of 1 per 40,000 live births. Case presentation: Herein, we present an infant male with nystagmus, hypotonia, and developmental delay who carried a clinical diagnosis of Leigh-like syndrome. Cerebral magnetic resonance imaging changes further supported the clinical evidence of an underlying mitochondrial disorder, but extensive diagnostic testing was negative. Trio exome sequencing under a research protocol uncovered compound-heterozygous missense variants in the HTRA2 gene (MIM: #606441): NM_013247.5:c.1037A>T:(p.Glu346Val) (maternal) and NM_013247.5:c.1172T>A:(p.Val391Glu) (paternal). Both variants are absent from public databases, making them extremely rare in the population. The maternal variant is adjacent to an exon-intron boundary and predicted to disrupt splicing, while the paternal variant alters a highly conserved amino acid and is predicted to be damaging by nearly all in silico tools. Biallelic variants in HTRA2 cause 3-methylglutaconic aciduria, type VIII (MGCA8), an extremely rare autosomal recessive disorder with fewer than ten families reported to date. Variant interpretation is challenging given the paucity of known disease-causing variants, and indeed we assess both paternal and maternal variants as Variants of Uncertain Significance under current American College of Medical Genetics guidelines. However, based on the inheritance pattern, suggestive evidence of pathogenicity, and significant clinical correlation with other reported MGCA8 patients, the clinical care team considers this a diagnostic result. Conclusion: Our findings ended the diagnostic odyssey for this family and provide further insights into the genetic and clinical spectrum of this critically under-studied disorder.

12.
J Mol Diagn ; 24(9): 1031-1040, 2022 09.
Article in English | MEDLINE | ID: mdl-35718094

ABSTRACT

Chromosomal microarray (CMA) is a testing modality frequently used in pediatric patients; however, published data on its utilization are limited to the genetic setting. We performed a database search for all CMA testing performed from 2010 to 2020, and delineated the diagnostic yield based on patient characteristics, including sex, age, clinical specialty of providers, indication of testing, and pathogenic finding. The indications for testing were further categorized into Human Phenotype Ontology categories for analysis. This study included a cohort of 14,541 patients from 29 different medical specialties, of whom 30% were from the genetics clinic. The clinical indications for testing suggested that neonatology patients demonstrated the greatest involvement of multiorgan systems, involving the most Human Phenotype Ontology categories, compared with developmental behavioral pediatrics and neurology patients being the least. The top pathogenic findings for each specialty differed, likely due to the varying clinical features and indications for testing. Deletions involving the 22q11.21 locus were the top pathogenic findings for patients presenting to genetics, neonatology, cardiology, and surgery. Our data represent the largest pediatric cohort published to date. This study is the first to demonstrate the diagnostic utility of this assay for patients seen in the setting of different specialties, and it provides normative data of CMA results among a general pediatric population referred for testing because of variable clinical presentations.


Subject(s)
Pediatrics , Child , Cohort Studies , Humans , Microarray Analysis/methods
13.
Genet Med ; 24(7): 1379-1391, 2022 07.
Article in English | MEDLINE | ID: mdl-35608568

ABSTRACT

PURPOSE: Noninvasive prenatal screening (NIPS) using cell-free DNA has been assimilated into prenatal care. Prior studies examined clinical validity and technical performance in high-risk populations. This systematic evidence review evaluates NIPS performance in a general-risk population. METHODS: Medline (PubMed) and Embase were used to identify studies examining detection of Down syndrome (T21), trisomy 18 (T18), trisomy 13 (T13), sex chromosome aneuploidies, rare autosomal trisomies, copy number variants, and maternal conditions, as well as studies assessing the psychological impact of NIPS and the rate of subsequent diagnostic testing. Random-effects meta-analyses were used to calculate pooled estimates of NIPS performance (P < .05). Heterogeneity was investigated through subgroup analyses. Risk of bias was assessed. RESULTS: A total of 87 studies met inclusion criteria. Diagnostic odds ratios were significant (P < .0001) for T21, T18, and T13 for singleton and twin pregnancies. NIPS was accurate (≥99.78%) in detecting sex chromosome aneuploidies. Performance for rare autosomal trisomies and copy number variants was variable. Use of NIPS reduced diagnostic tests by 31% to 79%. Conclusions regarding psychosocial outcomes could not be drawn owing to lack of data. Identification of maternal conditions was rare. CONCLUSION: NIPS is a highly accurate screening method for T21, T18, and T13 in both singleton and twin pregnancies.


Subject(s)
Cell-Free Nucleic Acids , Down Syndrome , Noninvasive Prenatal Testing , Trisomy 13 Syndrome , Trisomy 18 Syndrome , Cell-Free Nucleic Acids/genetics , Down Syndrome/diagnosis , Down Syndrome/genetics , Female , Humans , Noninvasive Prenatal Testing/methods , Pregnancy , Prenatal Diagnosis/methods , Sex Chromosome Aberrations , Trisomy/diagnosis , Trisomy/genetics , Trisomy 13 Syndrome/diagnosis , Trisomy 13 Syndrome/genetics , Trisomy 18 Syndrome/diagnosis , Trisomy 18 Syndrome/genetics
14.
Hematol Oncol ; 40(3): 475-478, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35613340

ABSTRACT

To investigate germline predisposition in lymphoma, we performed whole-exome sequencing and discovered a novel variant (c.817-1G>T) in programmed cell death 1 ligand 2 (PD-L2) in a family with early-onset lymphomas and other cancers. The variant was present in the proband with follicular lymphoma and his son with Hodgkin's lymphoma. It was in the terminal splice acceptor site of PD-L2 and embedded in a putative enhancer of Janus kinase 2 (JAK2) and programmed cell death 1 ligand (PD-L1). We also found that gene expression of PD-L2, PD-L1, and JAK2 was significantly increased. Using 3' rapid amplification of cDNA ends (3' RACE), we detected an abnormal PD-L2 transcript in the son. Thus, the c.817-1G>T variant may result in the elevated PD-L2 expression due to the abnormal PD-L2 transcript and the elevated PD-L1 and JAK2 expression due to increased enhancer activity of PD-L1 and JAK2. The PD-L2 novel variant likely underlies the genetic etiology of the lymphomas in the family. As PD-L2 plays critical roles in tumor immunity, identification of PD-L2 as a germline predisposition gene may inform personalized immunotherapy in lymphoma patients.


Subject(s)
B7-H1 Antigen , Lymphoma , Programmed Cell Death 1 Ligand 2 Protein , B7-H1 Antigen/genetics , Exome , Genetic Predisposition to Disease , Humans , Ligands , Lymphoma/genetics , Programmed Cell Death 1 Ligand 2 Protein/genetics , Exome Sequencing
15.
J Mol Diagn ; 24(2): 177-188, 2022 02.
Article in English | MEDLINE | ID: mdl-35074075

ABSTRACT

Exome reanalysis is useful for providing molecular diagnoses for previously uninformative samples. However, challenges exist in implementing a practical solution for clinicians and laboratories. This study complements the current literature by providing practical considerations for patient-level and cohort-level reanalyses. The Clinical and Laboratory Standards Institute assembled the Document Development Committee and an interpretation working group that developed the framework for reevaluation of exome-based data. We describe two distinct but complementary approaches toward exome reanalyses: clinician-initiated patient-level reanalysis, and laboratory-initiated cohort-level reanalysis. We highlight the advantages and constraints for both approaches, and provide a high-level conceptual guide for ordering clinicians and laboratories through the critical decision pathways. Because clinical exome sequencing continues to be the standard of care in genetics, exome reanalysis would be critical in increasing the overall diagnostic yield. A systematic guide will facilitate the efficient adoption of reevaluation of exome data for laboratories, health care professionals, genetic counselors, and clinicians.


Subject(s)
Clinical Laboratory Services , Exome , Exome/genetics , Humans , Laboratories , Laboratories, Clinical , Exome Sequencing
16.
Mol Diagn Ther ; 25(5): 529-536, 2021 09.
Article in English | MEDLINE | ID: mdl-34283395

ABSTRACT

Novel gene-disease discoveries, rapid advancements in technology, and improved bioinformatics tools all have the potential to yield additional molecular diagnoses through the reanalysis of exome sequencing data. Collaborations between clinical laboratories, ordering physicians, and researchers are also driving factors that can contribute to these new insights. Automation in ongoing natural history collection, evolving phenotype updates, advancements in processing next-generation sequencing data, and up-to-date variant-gene-disease databases are increasingly needed for systematic exome reanalysis. Here, we review some of the advantages and challenges for clinician-initiated and laboratory-initiated exome reanalysis, and we propose a model for the future that could potentially maximize the clinical utility of exome reanalysis by integrating information from electronic medical records and knowledge databases into routine clinical workflows.


Subject(s)
Exome , Laboratories, Clinical , Computational Biology , Exome/genetics , Humans , Phenotype , Exome Sequencing
17.
J Mol Diagn ; 23(1): 91-102, 2021 01.
Article in English | MEDLINE | ID: mdl-33349347

ABSTRACT

Carrier screening involves detection of carrier status for genes associated with recessive conditions. A negative carrier screening test result bears a nonzero residual risk (RR) for the individual to have an affected child. The RR depends on the prevalence of specific conditions and the detection rate (DR) of the test itself. Herein, we provide a detailed approach for calculating DR and RR. DR was calculated on the basis of the sum of disease allele frequencies (DAFs) of pathogenic variants found in published literature. As a proof of concept, DAF data for cystic fibrosis were compared with society guidelines. The DAF data calculated by this method were consistent with the published cystic fibrosis guideline. In addition, we compared DAF for four genes (ABCC8, ASPA, GAA, and MMUT) across three laboratories, and outlined the likely reasons for discrepancies between these laboratories. The utility of carrier screening is to support couples with information while making reproductive choices. Accurate development of DR and RR is therefore critical. The method described herein provides an unbiased and transparent process to collect, calculate, and report these data.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/prevention & control , Gene Frequency , Genetic Carrier Screening/methods , Amidohydrolases/genetics , Consanguinity , Family , Genetic Counseling/methods , Humans , Mass Screening/methods , Sulfonylurea Receptors/genetics , alpha-Glucosidases/genetics
18.
Nat Commun ; 11(1): 5799, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199705

ABSTRACT

The extent and importance of functional heterogeneity and crosstalk between tumor cells is poorly understood. Here, we describe the generation of clonal populations from a patient-derived ovarian clear cell carcinoma model which forms malignant ascites and solid peritoneal tumors upon intraperitoneal transplantation in mice. The clonal populations are engineered with secreted Gaussia luciferase to monitor tumor growth dynamics and tagged with a unique DNA barcode to track their fate in multiclonal mixtures during tumor progression. Only one clone, CL31, grows robustly, generating exclusively malignant ascites. However, multiclonal mixtures form large solid peritoneal metastases, populated almost entirely by CL31, suggesting that transient cooperative interclonal interactions are sufficient to promote metastasis of CL31. CL31 uniquely harbors ERBB2 amplification, and its acquired metastatic activity in clonal mixtures is dependent on transient exposure to amphiregulin, which is exclusively secreted by non-tumorigenic clones. Amphiregulin enhances CL31 mesothelial clearance, a prerequisite for metastasis. These findings demonstrate that transient, ostensibly innocuous tumor subpopulations can promote metastases via "hit-and-run" commensal interactions.


Subject(s)
Cell Communication , Clone Cells/pathology , Neoplasm Metastasis/pathology , Amphiregulin/metabolism , Animals , Ascites/pathology , Carcinogenesis/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation , Cell Separation , Cohort Studies , DNA Copy Number Variations/genetics , Epithelium/pathology , Female , Gene Amplification , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Ligands , Mice, SCID , Models, Biological , Peritoneal Neoplasms/secondary , Phenotype , Receptor, ErbB-2/genetics , Time Factors
19.
Sci Data ; 7(1): 8, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31913291

ABSTRACT

Cystic fibrosis (CF) is one of the most common genetic diseases worldwide with high carrier frequencies across different ethnicities. Next generation sequencing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has proven to be an effective screening tool to determine carrier status with high detection rates. Here, we evaluate the performance of the Swift Biosciences Accel-Amplicon CFTR Capture Panel using CFTR-positive DNA samples. This assay is a one-day protocol that allows for one-tube reaction of 87 amplicons that span all coding regions, 5' and 3'UTR, as well as four intronic regions. In this study, we provide the FASTQ, BAM, and VCF files on seven unique CFTR-positive samples and one normal control sample (14 samples processed including repeated samples). This method generated sequencing data with high coverage and near 100% on-target reads. We found that coverage depth was correlated with the GC content of each exon. This dataset is instrumental for clinical laboratories that are evaluating this technology as part of their carrier screening program.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Genetic Carrier Screening , Base Composition , Humans , Sequence Analysis, DNA
20.
Genet Med ; 20(4): 464-469, 2018 04.
Article in English | MEDLINE | ID: mdl-28914269

ABSTRACT

PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses.


Subject(s)
Exome , Genetic Association Studies , Genetic Predisposition to Disease , Molecular Diagnostic Techniques , Alleles , Biopsy , Child , Child, Preschool , Female , Genetic Association Studies/methods , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genotype , Humans , Infant , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Phenotype , Polymorphism, Single Nucleotide , Rare Diseases/diagnosis , Rare Diseases/genetics , Exome Sequencing , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...